# WWW.WIKIED.IN



Total No. of Pages : 02

Total No. of Questions : 09

B.Tech.(EE/Electrical & Electronics/Electronics & Electrical)

(Sem.-4)

## ELECTROMAGNETIC FIELDS

#### Subject Code : BTEE-403 M.Code : 57106

#### Date of Examination : 07-07-22

Time : 3 Hrs.

Roll No.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

## SECTION-A

- 1. Write briefly :
- a. A parallel polarized wave travels from air into the dielectric medium at Brewster angle of 75°. Find the relative permittivity of the dielectric.
- b. State 'Divergence Theorem'.
- c. What is Lorentz force? Explain.
- d. Predict the nature of the vector field.A =  $2yz\hat{a}_x+3zx\hat{a}_y+4xy\hat{a}_z$
- e. Does A×B = A×C implies that B=C? Justify your answer.
- f. If E is zero at any point, does it result into zero electric potential at that point?
- g. A current density is distributed in the direction and is given by

 $J = (r^2 + 2r)\hat{a}_z; \text{ for } r\mathbb{P} a.$ 

Find magnetic field intensity at any point

- h. What is the phase relation between a displacement current and a conduction current? Justify your answer.
- i. Why mobile phone does not work properly in the basement of the building?
- j. What is Surface Impedance?

| 1 | M-57106 |
|---|---------|
|   |         |

#### SECTION-B

- 2. Derive the expressions of attenuation constant and phase constant from the expression of propagation constant for the uniform plane wave propagating through the lossy dielectric.
- 3. Use Ampere's circuital law to obtain magnetic field due to a wire of infinite length and carrying current I at a point distant r from the wire.
- 4. State and prove 'Gauss's law'. Discuss any two applications of Gauss's law.
- 5. State and prove that Maxwell's equation in differential and integral forms which introduces the concept of displacement current
- 6. Two homogeneous isotropic dielectrics meet at plane x=0. For x @ 0,  $@_{r1} = 5$  and for x @ 0,  $@_{r^1} = 4$ . The electric field  $E_1 = 2\hat{a}_x + 3\hat{a}_y + \hat{a}_z V/m$  for x @ 0 exists. Find electric field for x @ 0, and electric flux density for both x @ 0 and x @ 0.

## SECTION-C

- 7. a) Let the vector field  $G = xy\hat{a}_x (2y + x)\hat{a}_y + 10z\hat{a}_z$ . Evaluate line integral  $\mathbb{D}_L G$ . dL from an initial point A(0,0,0) to B(1,2,3) using path
  - i) a straight line and
  - ii) using straight line segments (0,0,0) to (1,0,0) to (1,2,0) to (1,2,3).
  - b) Obtain the expression of capacitance of spherical capacitor using Laplace's equation.
- 8. a) The dielectric constant of water is 75. Find
  - i) The Brewester angle for parallel polarization, and the corresponding angle of transmission.
  - ii) The reflection and transmission coefficients when a plane wave with perpendicular polarization is incident from air on water surface at incidence angle equal to Brewster angle.
  - b) A uniform plane wave of frequency 16GHz is traveling in a medium with conductivity as 18 S/m,  $\square_r = 50$  and  $\square_r = 1$ . Obtain the loss tangent and predict thenature of the medium. Also, calculate the different characteristics associated with the wave.
- 9. Write short notes on the following:

<sup>&</sup>lt;sup>1</sup> | M-57106

## WWW.WIKIED.IN

- a) Magnetic Scalar Potential
- b) Green's Theorem
- c) Cartesian Coordinate System

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.